(@] rerminal rutes)

terminal rule INT returnsinstances of ecore: : INT cardinality
terminal INT returns ecore::EInt : (’0°..79°)+ ;
return type character range
by default, ecore: :EString character ranges are only available in terminal rules

any type can be returned, provided
itisan instance of ecore: :EDataType

terminal DOUBLE : INT ¢.’ INT ; W|th|nterm_|nalrules,fulescalls
rule call can only point to terminal rules

terminal I F_KEYWORD : ¢ if? - Keywor.ds can have any length and can contain.arbitrary characters
(including \n, \r, \'t, \b, \ f, and \u123 for Unicode characters)

keyword

terminal FOO : ‘f’ . ‘o’ ;
wildcard
any sequence of characters

examples: foo, fo, ff1234500
wildcards are only available in terminal rules

terminal MULTILINE_COMMENT : ¢/*x’ => ¢x/’

until token
everything should be consumed

until a certain token occurs
until tokens are only available in terminal rules

terminal BETWEEN_HASHES : “#° (!7#°)x ‘#’ ;

negated token
“inversion” of tokens (example: "not-hash”)
negated tokens are only available in terminal rules

group
terminal ASCII : ‘Ox’ (’0’..°7%) (’0’..79 | ‘A’..”F’) ;

alternatives

o Extended Backus-Naur Form Expressions

cardinality
someth‘ing [1] exactly one (default, no operator is used)

somethi ng? [e..1] zeroorone

something* [o..n] zeroormore

somethi Nng+ [1..n] oneormore

terminal
rule call rule call |
(’int’ ID ‘:=’ Expression) int x 1= 2+2
keyword keyword | sample code

optional part
’int’ ID (¢:=’ Expression)?
cardinality [0..1]

O) ¢ | . . .
(?int’ ID ¢,’)* int x, int y, 1int z,
can be repeated any number of times | sample code
or can be omitted

(’int’ ID ¢,’)+

cannot be omitted

O &=

when avariable is declared, its name should be an IDentifier
parser rule

terminal

Variable : ‘var’ name=ID ... ‘3’
language concept keyword feature of concept keyword

avariable can be declared as final
cardinality [0..1]

Variable : (isFinal ?= ‘final’)? ‘var’ name=ID ¢;’ ;
Boolean feature Boolean assignment operator
expects a feature of type EBoolean
and sets it to true if the right side was consumed,
independently on the concrete value of the right-hand side

a class can have several fields

Class : ‘class’ name=ID “{’ cardinality (0. .n]
fields += Variablex
¢ } ’ multi-valued feature add operator

adds the value on the right-hand side
’ to the feature, which is a list feature

O Gus Cheat sheet on Eclipse Xtext

enum rule

by Mikhail Barash
http://dsl-course.org

enum always has an implicit default value which corresponds to the first value Based on L. Bettini’s book Implementing domain-specific languages with Xtext and Xtend
and Xtext Documentation

enum Visibility : PUBLIC=’public’ | PRIVATE=’private’ | PROTECTED=’protected’ ;

default value

Variable : visibility=Visibility? typeName=(’int’|’string’) name=ID ‘;’ ;

if visibility is omitted, value PUBLIC will be assumed

| sample code
protected string s; int x;
assumed public

o Unordered groups O

unordered group an already declared variable can be assigned an expression

sample code
X : ¢) : ¢ £4 J i sibd 14 i sibd 14 Assignment : [Variable] ‘=’ Expression ‘;’ ; ' o =1; y=0;
Modifier : static?=‘static’? & final?=‘final’? & visibility=Visibility ; g . P s var X; X=1l; y=U,;
members of an unordered group can occur in any order, but each member must appear once %fﬁgﬁff{ﬁgﬂfm able ! Esagnmer}? © V?r';blﬁ - |ZaIIO\:jvedl d
static modifier can be given or omitted, final modifier can be given or omitted, visibility modifier must always be given concept within square brackets does not refer to a rule esauset |tstvar|a. sl as' ee: lelc ared
ets ¢ , assignment to variable y is not allowe
I sample of code (valid) sample of code (valid) sample of code (valid) sample of code (valid) butratherto an EClass (whichis a type and not a parser rule) because it has not been declared
I public static final static protected final private static public cross-reference will be resolved by searching in the program for an element of type Variable with the given name
in order for this to work, the referred element must have a feature called name
I sample of code (erroneous) sample of code (erroneous) sample of code (erroneous)
static final static public static final private final
| staticappears twice visibility modifier appears twice visibility modifier is missing O Am biguities and syntactic predicates

Conditional :
“if’ ¢(’ condition=Expr ‘)’ expressionWhenTrue=Expr

else-branch is optional

. (=>’else’ expressionWhenFalse=Expr)? ;
Express|ons grammar for languages with Java-like expressions, consider using Xbase syntactic predicate

if parser is at this particular decision point and doesn’t know what to do,
check whether else keyword is present: if it is, then take that branch directly
without considering other options that would match the same token sequence

invalid definition

Expression : left=Expression (’+’|’-’|’%’|’/’) right=Expression ;
left recursion reference to itself here is not forbidden,

first symbol of the rule refers to the rule itself because it is not the first symbol of the rule
not compatible with LL(*) grammars used by ANTLR

rules for operators with lower priorities are defined in terms of rules for operators with higher priorities
Expr : Or ;
zero or more

Or returns Expr : And ({Or.left=current} ||’ right=And)x* ;

asif Left=And would be here

Zero or more

And returns Expr : Equality ({And.left=current} ‘&&’ right=Equality)x* ;

asif left=Equality would be here

Zero or more

Equality returns Expr : Comparison ({Equality.left=current} op=(¢==’|’!=’) right=Comparison)* ;

asif Left=Comparison would be here

Zero or more

Comparison returns Expr : PlusOrMinus ({Comparison.left=current} op=(¢>=’|’<="|’>"|’<’) right=PlusOrMinus)* ;

asif left=PlusOrMinus would be here

Zero or more

PlusOrMinus returns Expr : MulOrDiv ({PlusOrMinus.left=current} op=(’+’|’-’) right=MulOrDiv)* ;

asif Left=MulOrDiv would be here

Zero or more

MulOrDiv returns Expr : Primary ({MulOrDiv.left=current} op=(’x’|’/’) right=Primary)* ; o Priority of operations

asif left=Primary would be here
from highest to lowest

' Boolean negation

Pr1mafy’return§ éxpr : Atomic returns Expr : .) %, / multiplication and divisior
(’ Expr ¢)’ | {IntConst} value=INT /. | B ,
e o S g . _ terminal £} +, — additionand subtraction

{Not} ¢!’ expression=Primary | {StringConst} value=STRING ;. |

Atomic {BoolConst} value=(’true’|’false’) | o <, <=, >, >= comparison
H {VarRef} var=[Variable] . gy ==, != equalityand non-equality

;] && Boolean And
7 | | Boolean Or

