
Example-Driven Software Language Engineering
Mikhail Barash

Bergen Language Design Laboratory, University of Bergen
Bergen, Norway

mikhail.barash@uib.no

Abstract
Language workbenches—tools to define software languages
together with their IDEs—are designed to simplify language
engineering and implementation: they free language engi-
neers from many meticulous tasks, but oftentimes have a
very steep learning curve even for experienced software pro-
fessionals. With the assumption that meta-definitions are
one of the key factors that hinder language engineering, we
introduce an example-driven approach to language defini-
tion. We describe in this paper our vision of a web-based
tool aimed at beginner language engineers, and list possible
requirements for such a tool. A language is defined by giv-
ing examples of code written in it using illustrative syntax
definition. These examples are then annotated to specify
different concerns of language definition—abstract syntax,
typing rules, validation rules, formatting rules, and dynamic
semantics.

CCS Concepts: • Software and its engineering → Inte-
grated and visual development environments; Syntax;
Context specific languages; Programming by example.

Keywords: example-driven, illustrative syntax definition,
transformations, language engineering, implicit modeling

ACM Reference Format:
Mikhail Barash. 2020. Example-Driven Software Language Engi-
neering. In Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’20), Novem-
ber 16–17, 2020, Virtual, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3426425.3426945

1 Introduction
Engineering a software language, be it a programming lan-
guage or a modeling language, requires versatile knowledge
and software development skills from a language developer,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00
https://doi.org/10.1145/3426425.3426945

as they have to define its syntax, static and dynamic seman-
tics, as well as implement a tailored Integrated Development
Environment (IDE), which is vital for successful adoption of
the language [43]. Over a decade ago, tools to define software
languages together with their IDEs have appeared under the
name of language workbenches [13, 15]; many of them still
have a very steep learning curve even for experienced soft-
ware professionals [34]. Our hypothesis [4] is that one of the
key factors that inherently makes language engineering intri-
cate is the prevalence ofmeta-definitions, with language def-
inition tools (such as grammars and language workbenches)
themselves being on the meta-meta-level.

We describe in this paper our vision of a web-based tool—
Language Wheel—aimed at beginner language engineers,
and list possible requirements for such a tool. A language is
defined by giving examples of code written in it using illus-
trative syntax definition. These examples are then annotated
to specify different concerns of language definition—abstract
syntax, typing rules, validation rules, formatting rules, and
dynamic semantics.
Such a definition mechanism can serve as a front-end

language workbench, whose output is a language definition
in another language workbench [13], such as, for example,
Eclipse Xtext [5, 14], Monticore [21], Spoofax [23], or Jet-
Brains MPS [8]. An alternative possibility is to output a
tailored editor—be it textual (e.g., Monaco1 or Ace2) or pro-
jectional [18, 46])—and a code generator for a language, or,
depending on the language, a CRUD application. Yet another
possibility is to output a language server protocol (LSP) in-
stance [10] for the language defined in Language Wheel.

2 Defining Languages in Language Wheel
We describe below how we imagine the language definition
process in Language Wheel.

2.1 Illustrative Syntax Definition
Unlike other tools that require a language engineer to define
a metamodel first, Language Wheel takes an example-driven
approach. Our hypothesis is that it will be easier for begin-
ner language engineers to start prototyping a language by
writing down several samples of code written in it, rather
than by directly devising a metamodel.
Definition of a language construct in an illustrative way

is comprised of the following three concerns:
1https://microsoft.github.io/monaco-editor/
2https://ace.c9.io

246

https://doi.org/10.1145/3426425.3426945
https://doi.org/10.1145/3426425.3426945

SLE ’20, November 16–17, 2020, Virtual, USA Mikhail Barash

• example (instance), defining concrete syntax;
• annotation, that defines several perspectives—abstract
syntax, formatting, validation rules, type rules; and

• implementation, that specifies dynamic semantics.
Consider how concept entity in an assumed Entity Lan-

guage [5] can be defined. First, an instance of an entity is
input by a language engineer as simple text, as shown in
Fig. 1(top). To communicate that this piece of code represents
an entity, the user selects the code and, using a context menu,
creates a new concept entity, as shown in Fig. 1(center). One
must then define the abstract syntax of this concept, namely,
features name, parent, and fields. This is done by further se-
lecting the respective pieces of code and assigning concepts
to them: features name and parent are identifiers3, and fea-
ture fields is a field declaration, as shown in Fig. 1(bottom)
and 2.

Figure 1. Illustrative definition of concrete and abstract syn-
tax: (top) code sample without annotations; (center) annotat-
ing the example as a new concept entity declaration; (bottom)
further annotating the example by specifying feature name
of type identifier.

Using further annotation perspectives, one can require
that the identifier in feature name should not have been
declared before, while identifier in feature parent should
form a cross-reference to an already defined entity4. Yet
3Concepts identifier and expression are built-in.
4We imagine similar, annotations-based, ways to define scopes of visibility,
qualified names, and so on, by giving a language engineer a possibility to
follow the patterns met in standard general-purpose languages. To help
a language engineer navigate in using different annotation perspectives,
we imagine Language Wheel guiding the language engineer via context
menus (“intentions”) with possible actions that might be taken (e.g., “specify
cardinality”, “specify whether this identifier should refer to an existing

another annotation perspective is used to require cardinality
of feature fields to be 0..9, as shown in Fig. 2. We discuss
such constraints on features [38] in more details in Sect. 2.2.

Different annotation perspectives are used to define other
properties of concepts, such as syntax highlighting and for-
matting rules. Fig. 2 showcases a formatting annotation
for feature fields of concept entity : each element should be
prepended with an indentation, and elements are separated
using a newline character.
Similarly to concept entity, one can define concept field

declaration by giving its instance var myNumber = 10 + 20;,
as shown in Fig. 6(top, center). It is important to note that
the language engineer is not expected to operate with meta-
definitions along the lines of FieldDecl → “var” ident
“=” expr “;” to define concepts. Our hypothesis is that this
might enable non-language-engineers—perhaps even do-
main experts—to define (simple) languages.

One can define several examples of code for a concept. In
that case, annotations shown for each of the examples shall
reflect properties contained in annotations defined in all
other examples of the concept, thus giving a holistic picture
of a concept in each of its instances. One can also define
multiple syntaxes (called projections) for a concept [8, 37]:
for example, one can be verbose and aimed at beginner-
users of the language, while another one can be succinctly
designed with experienced users in mind [43]. The end-user
of the language should be able to switch between different
notations, in a way similar to existing projectional editors [8,
37, 43, 44].

A language engineer will be issued a warning if the exam-
ples for one concept are conflicting each other. For example,
in one example of concept entity, the concrete syntax might
use keyword extends before feature parent (see Fig. 2), while
in another example, a colon might be used. This will be per-
ceived by Language Wheel as either two possible syntaxes
for concept entity, or a conflict in the examples. By default,
the first option will be assumed, but a warning still will be
issued.

To keep language definition consistent across concerns—be
it concrete or abstract syntax, formatting rules, type system
definition, validation rules, and so on—a flavor can be as-
signed to a language. Flavor is then used by Language Wheel
to guide a language engineer and verify their language defi-
nitions against “best practices” specified in the flavor. One
can imagine the following practices to be enforced in a Java-
like flavor: in terms of abstract syntax—there should be no
unconventional restrictions on cardinality of features (e.g.,
3..17); in terms of concrete syntax—keywords should not
contain special characters, concept identifier should be de-
fined as in Java, statements should have an ending semicolon,

identifier”, etc.) It should also be possible to toggle the visibility of the
annotation perspectives (similarly to how layers in graphical editing tools
can be shown and hidden), to allow a language engineer focus on a particular
aspect of the language definition.

247

Example-Driven Software Language Engineering SLE ’20, November 16–17, 2020, Virtual, USA

qualified names should use dot as a separator; in terms of
formatting—indentations should be used inside blocks; in
terms of validations—identifiers should follow camel case; in
terms of type systems—there should be rules for typecasting;
and so on. We imagine that Language Wheel will have a set
of predefined flavors, and users will be able to define their
own flavors to be assigned to their languages. One can also
imagine orthogonality checking of a language definition.

Besides specifying “complete” code examples, a language
engineer can mark a particular fragment of an example to be
a definition of a concept (rather than the “complete” exam-
ple itself). For instance, one can define concept assignment
statement within an entity declaration, and mark only the
code corresponding to that assignment statement. The parts
of code representing an entity would then be disregarded
as they only provide a context for convenience of the lan-
guage engineer. The same idea applies for a definition of
concept entity, where feature parent should be an existing
entity: for this, it suffices to define a “phantom” parent entity
(entity Person {}) within the example in Fig. 2, but only
mark the code for entity Student as the definition5. Example
fragments as described here are similar to template fragments
of code generators in JetBrains MPS [8].

Figure 2. Several annotation perspectives for concept en-
tity : feature name of an entity is an identifier that was not
declared before; feature parent is a cross-reference to an ex-
isting entity; the cardinality of feature fields is defined as
0..9; formatting of each field declaration in fields requires
an indentation; field declarations are separated by a newline
character; curly braces are defined by language flavor and
can be changed should a different flavor be chosen.

2.2 Defining Validations
Constraint checks allow users of the language to get notifi-
cations about inconsistencies in the code and prevent illegal
code from being executed or processed further. It is a task
of a language engineer to define such constraint checks and
anticipate possible fixes of issues in the code. In the defini-
tion of concept entity, an example of a constraint is that the
identifier in feature parent should refer to an already existing

5Without using example fragments, the parent entity Person would be
defined as a separate example of concept entity.

Figure 3. An example code for Miss Grant’s Controller [17].

entity, and not just be any identifier; the definition of this
cross-reference constraint is shown in Fig. 2.

A language engineer can define methods that perform ar-
bitrary custom checks on the abstract syntax of the language;
such methods are called validations [5]. To facilitate their def-
inition, we envision identifying possible frequent validations
and allowing language engineers to use them in their own
languages “out-of-the-box”. An example of such “pluggable”
validation is restricting a token by an enumeration whose
values are either fixed, or are taken from a database or via
REST API, as shown in Fig. 4. Another example is giving
language engineers freedom to define arbitrary cardinality
of features, rather than restricting to standard options (1,
0..1, 0..∗, 1..∗); this is showcased in Fig. 2.

We imagine that Language Wheel supports an additional
way to specify constraints—by giving avoidable (erroneous)
examples and specifying the reason for a badness in the form
of a Boolean condition, as shown in Fig. 5. Based on such
avoidable examples, a set of validation rules can be formed
automatically.
For each of the validations, either predefined or user-

defined, it is possible to define a quickfix, which is a pro-
posal to solve an issue in the code; quickfixes are typically
implemented as a context menu that appears near the error
marker [5]. As in the case of validations, we envision provid-
ing a language engineer with a set of “pluggable” quickfixes

248

SLE ’20, November 16–17, 2020, Virtual, USA Mikhail Barash

Figure 4. Defining validations: (top) a value for the first to-
ken is restricted by an enumeration; keyword final is made
optional; (bottom) a custom validation method myCheck is
associated with token g; the token after of should be an
entry in a JSON object, which is returned by a REST API at
a specified address. Note that in the editor, features can be
moved around within the concept or to a different concept
using drag-and-drop, as discussed in Sect. 3.

Figure 5. Specifying an avoidable example: badness assigned
to the else-block because its feature statements has cardi-
nality 0.

that can be used in their languages. This set of quickfixes can
be based on the flavor of the language, as discussed above.

Figure 6. Different annotation perspectives for concept field
declaration: (top) names of features; (center) concepts of fea-
tures; (bottom) typing rules. The latter specify that one first
needs to compute the type of feature init, store it as type1,
and then assign to feature name type type1, which is copied
from sibling feature init.

Yet another annotation perspective shall be used to define
typing rules for concepts. Our vision is to have a predefined
set of possible type meanings, with the language engineer as-
signing those meanings to types used in their language. We
distinguish between inference rules and checking rules, sim-
ilarly to how type systems are defined in JetBrains MPS [8].

An inference rule ascribes a type to a feature; it can either
be an exact fixed type or be copied from a sibling feature of
the concept. Fig. 6(bottom) shows an example of a field dec-
laration, where first the type of feature init is computed and
stored in type variable type1, and then ascribed to feature
name. A checking rule only checks whether certain types are
compatible. An example of integer field declaration, shown
in Fig. 7, requires that the type of feature init is number. A
similar annotation could check, for example, that feature
condition of concept if statement is of type bool.

Figure 7. Type system annotation for concept integer field
declaration. Both features name and init have type number;
it is ascribed to name, but should be validated for init.

We see a special case for concept expression, where a lan-
guage engineer has to define types of primitive expressions
and typing templates for operators (such as number + number
= number, or number + text = text).

2.3 Defining Transformations
For each code example that the language engineer has de-
fined, an implementation—i.e., an output associated with
that example—must be specified. Code to be generated is rep-
resented in a textual form, with annotations that refer to
features mentioned in the instance of the concept.

Consider concept send statement of an assumed financial
DSL, defined illustratively as send 100 CHF to John, as
shown in Fig. 8(left). This concept has features amount, cur-
rency, and payee (represented illustratively as 100, CHF, and
John, respectively), and is transpiled into JavaScript in a way
that these features are directly emitted into the output code.
In this trivial case, language engineer would only need to pro-
vide the desired output string—the annotation of the features
can be done automatically, based on the textual equivalence
to feature values in the example.
In a general case, we imagine defining transformation

rules that provide a mechanism to annotate output code with
template conditions and loops, in spirit of template expres-
sions of Eclipse Xpand [19], Eclipse Xtend [5], rewriting rules
of Stratego/XT [40] or macros of JetBrains MPS [8]. Again,
based on the flavor of the language, “standard” outputs can
be suggested by Language Wheel for certain concepts.
Besides model-to-text transformations, one can imagine

that model-to-model transformations could be defined in
LanguageWheel. An alternative implementation of a concept
is defining an interpreter : a language engineer would define
code (in a standard general-purpose language) that will be
executed for the concept.

249

Example-Driven Software Language Engineering SLE ’20, November 16–17, 2020, Virtual, USA

Figure 8. Defining a code generator for concept send state-
ment in an assumed financial DSL. An example of generated
code is presented as a string annotated with the features of
the concept.

It should be possible to define several implementations for
a code example, that is, having multiple generation targets
for a single source.

3 A Web-Based Tool
We imagine Language Wheel as a web-based tool, whose
interface could resemble a standard IDE, as shown in Fig. 9.
The left pane contains a list of examples of code written in
the language being defined, as well as examples imported
from other languages (see Sect. 5). The main pane is split
into two parts: language definition (M2) and sandbox (M1).
Language definition part is split into an illustrative definition
of a concept and its code generator (cf. Fig. 8). The sandbox
part is used to preview language definitions—it has a working
editor for the language and can run the code generator to
output generated code. It should be possible to enable end-
user mode, where the language definition part is not visible
to the user.

Figure 9. Envisioned user interface of Language Wheel.

Illustrative language definition uses a “semi-projectional”
editor with an edit-mode and a view-mode. When a language
engineer inputs and edits code examples, the edit-mode with
an ordinary text editor is activated, and when there is no edit-
ing going on, a view-mode with richer notation is enabled.
Edit-mode provides a freedom of textual editing, including a
possibility to paste code samples from other editors (which
can be an issue in modern projectional editors [45]). View-
mode, on the other hand, allows showing code annotations
in a way similar to figures in the present paper, without
complications connected to projectional editing [18, 30]. An-
notating code is possible in both modes, though with differ-
ent flexibility. We imagine some code annotations shown
in the ordinary editor, similar to how “code minings” [48]
are shown in modern IDEs. In addition, view-mode allows a
user to drag-and-drop features and annotations both within

and among examples. This is showcased in Fig. 4, where
token final can be, for example, either moved before token
private, or altogether into concept entity. Drag-and-drop
should also apply to annotations and parts of annotations of
tokens. To further facilitate editing experience, we envision
adopting rich text editors, similar to the ones used in text
processors. This shall enable using non-textual notations,
such as tabular or positional [43].

4 FromWorkbench to Platform
One can envision Language Wheel not only as a language or
modelingworkbench, but as aweb-basedmulti-user platform
for defining and using languages.

When a language engineer registers a language as publicly
available, a language space is assigned to the language. This
language space is then made available to end-users who are
assigned workspaces, where they can create programs in the
language. One can imagine that an end-user workspace sup-
ports writing programs in languages from different language
spaces.
We believe it is important to implement an API so that

users of the system could programmatically interact with
existing models (i.e., languages and programs in those lan-
guages), serialize them, and create new ones.
We imagine collaborative editing available both for lan-

guage engineers and end-users [22, 41], as well as an inte-
gration with version control systems.
We also envision a social-media component for both lan-

guage engineers and end-users.

5 Language Composition and Migration
Language composition is vital for an efficient modeling expe-
rience [42]. As we envision Language Wheel as a multi-user
platform, we imagine that when a language is being defined
in Language Wheel, all other languages that are defined
and registered as public by other users, become implicitly
imported. A language engineer will then be able to choose
which languages or concepts are to be used in their lan-
guage. This essentially creates a market of languages and
concepts [12, Sect. 11.6.2.]—to further facilitate prototyping
of new software languages based on the ones already defined.
We imagine a standard library—a palette—of languages and
concepts that will be predefined in Language Wheel.

With language extension, a language engineer can append
an existing concept to their language. This concept can be
either cloned (thus behaving as if it were defined by the
language engineer who copied it), or be a reference to the
original concept (in that case, changes to the original con-
cept, possibly introduced by another user at a later point,
will be propagated to the copied one). Language embedding,
referencing, and reuse [42, 43] depend on the output gener-
ated by Language Wheel, as discussed in the beginning of
Sect. 2.

250

SLE ’20, November 16–17, 2020, Virtual, USA Mikhail Barash

A Language Wheel-specific case of language composition
deals with language flavors: if those are defined within Lan-
guage Wheel, then assigning a flavor to a language can be
considered as language composition.

We imagine that migrating a language to a newer version
will propagate the changes in all existing models of all users;
implementation of this will heavily depend on whether the
language is textual or projectional; the latter case seems to
be easier to handle6.

6 Related Work
Assembling languages from predefined concepts. CBS

framework for component-based specification of program-
ming languages [31, 33] provides a library of reusable com-
ponents. The semantics of each language construct is defined
by translation to a collection of predefined constructs.
Miksilo language workbench enables creating languages

“bymixing existing languages and building on top of them” [47].
Language transformations are represented as deltas; a delta
applies a small change to a language, such as adding or re-
moving a language feature, or adding an optimization. Lan-
guages are thus defined by composing deltas.
Déjà Vu [36] is an application building platform where

a developer imports concepts form the catalogue and ad-
justs them to fit the particular needs of an application being
developed.

Live language development. Languageworkbench Spoofax
[23, 27] supports live language development: the user can
see a language specification and an editor for the language
within the same window, and after changes to the specifica-
tion are made, the editor gets immediately updated. Thus,
language engineers get fast feedback when they change their
language, enabling experimentation with language design
and development [27]. A similar approach is utilized in lan-
guage workbenches JetBrains MPS [8, 45], MetaEdit+ [24],
and Racket [39], among others.
Microsoft Oslo allowed defining an input example and a

grammar, and showed a representation of parsing the input
with the grammar [16].

Example-driven modeling. Example-driven modeling [3,
9, 28] is a modeling approach that uses both explicit examples
and abstractions to model complex business knowledge [1].
In this approach, abstractions are synthesized from a set
of examples [3], whereas in Language Wheel, the language
engineer him- or herself annotates the examples of concepts
and thus defines the abstract syntax only implicitly.
Another modus operandi of example-driven modeling is

example derivation [3], that is, generating examples from
abstractions. In connection to Language Wheel, we could
imagine the following process: a language engineer defines
a collection of annotated examples of a concept (implicitly
6https://www.jetbrains.com/help/mps/migrations.html

specifying the abstract syntax), and then annotated exam-
ples that conform to the abstract syntax are derived auto-
matically. Our hypothesis is that this could help a beginner
language engineer in spotting issues and inconsistencies in
their original examples. The language engineer can modify
the derived examples thusly refining [2] the specification
of abstract syntax—which will be propagated back to the
original examples of the concept.

Projectional editing. Similar to the “semi-projectional”
editing as explained in Section 3, hybrid editors augment
text-based programs with additional information [20].
MacGnome environment [29] had a special editing mode

that allowed converting sections of code into plain text to
perform editing; after that the sections were converted back
to a structural representation.

InGreenfoot [6], a program is represented as frames, which
are created using text- and mouse-based operations [26];
expressions can be entered in a textual mode and it is possible
to convert them on the fly into structured expressions [6].
Barista [26] supports structure views that enable repre-

senting structural items in code in a visual way instead of
textual. Graphite [32] allows incorporating custom highly-
specialized interactive code generation interfaces directly
into textual editors (e.g., a visual color picker associated with
a textual representation of an instance of class Color in Java).

Many of these ideas can be reused in the implementation
of the “semi-projectional” editor of Language Wheel.

7 Discussion
Language Wheel is apparently the first workbench that
focuses on purely example-driven definition of languages.
We find it particularly important to guide a language engi-
neer by using language flavors, which can be thought of as
(meta)schemata for language definition process.

The current state of implementation of Language Wheel
is in the very early phase. Many of the details of how var-
ious concerns of language definition can be defined using
annotations remain to be elaborated. Foremost, this applies
to typing rules and scopes of visibility.

Identifying commonly used concepts (together with their
associated annotation perspectives) that will constitute the
standard library of Language Wheel is an interesting task
in itself. Many of those annotation perspectives will require
some notion of a generic definition to be instantiated when
specifying a particular language; for example, quickfixes can
be considered as generic transformations [7, 11, 25, 35].

Acknowledgments
The author is thankful to the anonymous reviewers for many
valuable comments on the paper. The author is also thankful
toM. Boersma, M. Haveraaen, B. Kolb, C. Omar, F. Tomassetti,
M. Voelter, and others for discussions about earlier versions
of this paper presented at informal occasions.

251

Example-Driven Software Language Engineering SLE ’20, November 16–17, 2020, Virtual, USA

References
[1] M. Antkiewicz, K. Bak, K. Czarnecki, Z. Diskin, D. Zayan, and A.

Wasowski. 2013. Example-Driven Modeling using Clafer. In MoDELS
2013 (CEUR Workshop Proceedings), Vol. 1104. CEUR-WS.org, 32–41.

[2] R.-J. Back and J. von Wright. 1998. Refinement Calculus - A Systematic
Introduction. Springer.

[3] K. Bak, D. Zayan, K. Czarnecki, M. Antkiewicz, Z. Diskin, A. Wasowski,
and D. Rayside. 2013. Example-driven modeling: model = abstractions
+ examples. In ICSE ’13. IEEE Computer Society, 1273–1276.

[4] M. Barash. 2020. Enabling Language Engineering for the Masses. In
MODELS ’20 Companion.

[5] L. Bettini. 2013. Implementing domain-specific languages with Xtest
and Xtend: learn how to implement a DSL with Xtext and Xtend using
easy-to-understand examples and best practices. Packt Pub.

[6] N. C. C. Brown, A. AlTadmri, and M. Kölling. 2016. Frame-Based
Editing: Combining the Best of Blocks and Text Programming. In
LaTICE 2016. IEEE Computer Society, 47–53.

[7] J.-M. Bruel, B. Combemale, E. Guerra, J.-M. Jézéquel, J. Kienzle, J. de
Lara, G. Mussbacher, E. Syriani, and H. Vangheluwe. 2020. Compar-
ing and classifying model transformation reuse approaches across
metamodels. Softw. Syst. Model. 19, 2 (2020), 441–465.

[8] F. Campagne. 2014. The MPS Language Workbench, Vol. 1.
[9] H. Cho, Y. Sun, J. Gray, and J. White. 2011. Key challenges for modeling

language creation by demonstration. In ICSE 2011.
[10] Microsoft Corp. [n. d.]. Language Server Protocol Specification. https:

//microsoft.github.io/language-server-protocol
[11] J. S. Cuadrado, E. Guerra, and J. de Lara. 2014. A Component Model

for Model Transformations. IEEE Trans. Software Eng. 40, 11 (2014),
1042–1060.

[12] K. Czarnecki and U. W. Eisenecker. 2005. Generative programming:
methods, tools, and applications. Addison Wesley.

[13] S. Erdweg, T. van der Storm, M. Voelter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J.
Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. A. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, and J. van der
Woning. 2015. Evaluating and comparing language workbenches:
Existing results and benchmarks for the future. Comput. Lang. Syst.
Struct. 44 (2015), 24–47.

[14] M. Eysholdt and J. Rupprecht. 2010. Migrating a large modeling envi-
ronment from XML/UML to Xtext/GMF. In SPLASH/OOPSLA Compan-
ion, W. R. Cook, S. Clarke, and M. C. Rinard (Eds.). ACM, 97–104.

[15] M. Fowler. [n. d.]. Language Workbenches: The Killer-App for Domain
Specific Languages?

[16] M. Fowler. [n. d.]. Oslo. https://martinfowler.com/bliki/Oslo.html
[17] M. Fowler and R. Parsons. 2011. Domain-specific languages. Addison-

Wesley.
[18] A. Gomolka and B. Humm. 2011. Structure Editors: Old Hat or Future

Vision?. In ENASE 2011 (Communications in Computer and Information
Science), Vol. 275. Springer, 82–97.

[19] R.C. Gronback. 2009. Eclipse modeling project: a domain-specific lan-
guage toolkit. Addison-Wesley Professional.

[20] B. Hempel, J. Lubin, G. Lu, and R. Chugh. 2018. Deuce: a lightweight
user interface for structured editing. In ICSE 2018. ACM, 654–664.

[21] K. Hölldobler and B. Rumpe. 2017. MontiCore 5 Language Workbench
Edition 2017. Shaker Verlag.

[22] J. L. Cánovas Izquierdo and J. Cabot. 2013. Enabling the Collaborative
Definition of DSMLs. In CAiSE 2013 (Lecture Notes in Computer Science),
Vol. 7908. Springer, 272–287.

[23] K. C. L. Kats and E. Visser. 2010. The Spoofax language workbench:
rules for declarative specification of languages and IDEs. In OOPSLA
2010. ACM, 444–463.

[24] S. Kelly, K. Lyytinen, M. Rossi, and J.-P. Tolvanen. 2013. MetaEdit+
at the Age of 20. In Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE. Springer, 131–137.

[25] M. Kessentini, H. A. Sahraoui, M. Boukadoum, and O. Benomar. 2012.
Search-based model transformation by example. Softw. Syst. Model. 11,
2 (2012), 209–226.

[26] A. J. Ko and B. A. Myers. 2006. Barista: An implementation frame-
work for enabling new tools, interaction techniques and views in code
editors. In CHI 2006. ACM, 387–396.

[27] G. Konat, S. Erdweg, and E. Visser. 2016. Towards live language devel-
opment. In (LIVE) 2016.

[28] J. J. López-Fernández, Cuadrado J. S, E. Guerra, and J. de Lara. 2015.
Example-driven meta-model development. Softw. Syst. Model. 14, 4
(2015), 1323–1347.

[29] P. Miller, J. Pane, G. Meter, and S. A. Vorthmann. 1994. Evolution of
Novice Programming Environments: The Structure Editors of Carnegie
Mellon University. Interact. Learn. Environ. 4, 2 (1994), 140–158.

[30] S. Minör. 1992. Interacting with Structure-Oriented Editors. Int. J.
Man Mach. Stud. 37, 4 (1992), 399–418.

[31] P. D. Mosses. 2019. A Component-Based Formal Language Workbench.
In F-IDE@FM 2019 (EPTCS), Vol. 310. 29–34.

[32] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers. 2012. Active code
completion. In ICSE 2012. IEEE Computer Society, 859–869.

[33] PLanCompS Project. [n. d.]. CBS: A Framework for Component-Based
Specification of Programming Languages. https://plancomps.github.
io/CBS-beta

[34] D. Ratiu, V. Pech, and K. Dummann. 2017. Experiences with Teaching
MPS in Industry: Towards Bringing Domain Specific Languages Closer
to Practitioners. In MODELS 2017. IEEE Computer Society, 83–92.

[35] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R.
Suzuki, and B. Hartmann. 2017. Learning syntactic program transfor-
mations from examples. In ICSE 2017. IEEE / ACM, 404–415.

[36] S. P. De Rosso, D. Jackson, M. Archie, C. Lao, and B. A. McNamara
III. 2019. Declarative assembly of web applications from predefined
concepts. In Onward! 2019. ACM, 79–93.

[37] C. Simonyi, M. Christerson, and S. Clifford. 2006. Intentional software.
In OOPSLA 2006. ACM, 451–464.

[38] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. 2009. EMF:
Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Profes-
sional.

[39] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M.
Felleisen. 2011. Languages as libraries. In PLDI 2011. ACM, 132–141.

[40] E. Visser. 2001. Stratego: A Language for Program Transformation
Based on Rewriting Strategies. In RTA 2001 (Lecture Notes in Computer
Science), Vol. 2051. Springer, 357–362.

[41] M. Voelter. [n. d.]. An Open Platform For Systems and Business Engi-
neering Tools: Collaborative Modeling and Analysis at Scale. https:
//voelter.de/data/pub/APlatformForSystemsAndBusinessModeling.
pdf

[42] M. Voelter. 2011. Language and IDE Modularization and Composi-
tion with MPS. In GGTTSE 2011 (Lecture Notes in Computer Science),
Vol. 7680. Springer, 383–430.

[43] M. Voelter and S. Benz. 2013. DSL engineering: designing, implementing
and using domain-specific languages. Dslbook.org.

[44] M. Voelter and S. Lisson. 2014. Supporting Diverse Notations in MPS’
Projectional Editor. In GEMOC@Models (CEUR Workshop Proceedings),
Vol. 1236. CEUR-WS.org, 7–16.

[45] M. Völter, J. Siegmund, T. Berger, and B. Kolb. 2014. Towards User-
Friendly Projectional Editors. In SLE 2014 (Lecture Notes in Computer
Science), Vol. 8706. Springer, 41–61.

[46] J. Warmer. [n. d.]. ProjectIt – A Framework for building projectional
web editors. http://www.projectit.org

[47] R. Willems. [n. d.]. Miksilo: A modulatiry first language construction
workbench. http://keyboarddrummer.github.io/Miksilo/

[48] A. Zerr. [n. d.]. Inline code annotations in Eclipse Platform with new
CodeMining support. https://www.eclipsecon.org/france2018/session/
inline-code-annotations-eclipse-platform-new-codemining-support

252

https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/language-server-protocol
https://martinfowler.com/bliki/Oslo.html
https://plancomps.github.io/CBS-beta
https://plancomps.github.io/CBS-beta
https://voelter.de/data/pub/APlatformForSystemsAndBusinessModeling.pdf
https://voelter.de/data/pub/APlatformForSystemsAndBusinessModeling.pdf
https://voelter.de/data/pub/APlatformForSystemsAndBusinessModeling.pdf
http://www.projectit.org
http://keyboarddrummer.github.io/Miksilo/
https://www.eclipsecon.org/france2018/session/inline-code-annotations-eclipse-platform-new-codemining-support
https://www.eclipsecon.org/france2018/session/inline-code-annotations-eclipse-platform-new-codemining-support

	Abstract
	1 Introduction
	2 Defining Languages in Language Wheel
	2.1 Illustrative Syntax Definition
	2.2 Defining Validations
	2.3 Defining Transformations

	3 A Web-Based Tool
	4 From Workbench to Platform
	5 Language Composition and Migration
	6 Related Work
	7 Discussion
	References

